Estimating Accuracy from Unlabeled Data

نویسندگان

  • Emmanouil Antonios Platanios
  • Avrim Blum
  • Tom M. Mitchell
چکیده

We consider the question of how unlabeled data can be used to estimate the true accuracy of learned classifiers. This is an important question for any autonomous learning system that must estimate its accuracy without supervision, and also when classifiers trained from one data distribution must be applied to a new distribution (e.g., document classifiers trained on one text corpus are to be applied to a second corpus). We first show how to estimate error rates exactly from unlabeled data when given a collection of competing classifiers that make independent errors, based on the agreement rates between subsets of these classifiers. We further show that even when the competing classifiers do not make independent errors, both their accuracies and error dependencies can be estimated by making certain relaxed assumptions. We then present an alternative approach based on graphical models that also allows us to combine the outputs of the classifiers into a single output label. A simple graphical model is introduced that performs well in practice. Then, two nonparametric extensions to it are presented, that significantly improve its performance. Experiments on two real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. We also obtain results demonstrating our graphical model approaches beating alternative methods for combining the classifiers’ outputs. These results are of practical significance in situations where labeled data is scarce and shed light on the more general question of how the consistency among multiple functions is related to their true accuracies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Accuracy from Unlabeled Data: A Bayesian Approach

We consider the question of how unlabeled data can be used to estimate the true accuracy of learned classifiers, and the related question of how outputs from several classifiers performing the same task can be combined based on their estimated accuracies. To answer these questions, we first present a simple graphical model that performs well in practice. We then provide two nonparametric extens...

متن کامل

Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach

We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuiti...

متن کامل

Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes

With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Estimation of Squared-Loss Mutual Information from Positive and Unlabeled Data

Capturing input-output dependency is an important task in statistical data analysis. Mutual information (MI) is a vital tool for this purpose, but it is known to be sensitive to outliers. To cope with this problem, a squared-loss variant of MI (SMI) was proposed, and its supervised estimator has been developed. On the other hand, in real-world classification problems, it is conceivable that onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014